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Abstract Based on the newly proposed temperature
dependent dead space model, the breakdown voltage and
bandwidth of InP/InGaAs avalanche photodiode (APD)
have been investigated in the temperature range from
-50°C to 100°C. It was demonstrated that our proposed
model is consistent with the experimental results. Our
work may provide a guidance to the design of APDs with
controllably low temperature coefficient.*

Keywords optical communication, separate absorption,
grading, charge, and multiplication avalanche photodiode
(SAGCM APD), dead space effect, temperature coefficient

1 Introduction

InP/InGaAs separate absorption, grading, charge, and
multiplication avalanche photodiodes (SAGCM APDs)
have been widely applied in optics communication
systems [1]. Moreover, there continues to be a strong
interest in the application of the APD in the fields of
quantum key distribution (QKD), national defense, and
astrosurveillance, as so-called single photon avalanche
diodes (SPADs) used in Geiger mode [2–6]. It is
fascinating to notice that the design philosophy of APDs
for the optical communication systems and that of SPADs
for the quantum information applications, especially the
QKD systems, are quite different [7]. Nevertheless, there is
no doubt that the temperature dependence characteristics
are crucial for APDs applied in the field of traditional
optical communication, as well as SPADs in quantum
communication systems. From the point of view of

application, APDs immune to the change of temperature,
i.e., APDs with low temperature coefficient is strongly
designed, which has been drawn a lot of attention in recent
years [8–11]. An empirical equation for temperature
coefficient of APD was first reported in 1997 [8], but
without considering the dead space effect. A simplified
approach to time-domain modeling of avalanche photo-
diodes considering the dead space effect was reported in
1998 [9]. And then an improved empirical formula was
proposed in 2010 [11].
In this work, based on static Poisson’s equation and

carrier transport equation, we developed a temperature
dependent model for APDs taking dead space effect into
account. A comparison of simulation with experimental
results for the breakdown voltage and bandwidth of InP/
InGaAs APD has been performed in the temperature range
from –50°C to 100°C. It is shown that the temperature
dependent dead space model is consistent with the
measurements. Our work may provide a guidance to the
design of APDs with controllably low temperature
coefficient.

2 Physical model

The physical model was derived in the frequency domain
by taking the Laplace transform of the current continuity
equations, and the detail can be found in our previous work
[12]. For the region without ionization (e.g., absorption
layer, charge layer and grading layer), the analytic
expression of carrier density can be derived according to
the boundary conditions and the carrier transport equa-
tions. While for the multiplication layer, the avalanche
region was divided into a number of spatial segments with
equal energy spacing and the discrete expression can be
deduced. Due to the dead space effect, it is thought that
carriers must travel a fixed number of segments before
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reaching the threshold energy. Therefore, the carriers can
be divided into two types: 1) carriers with energy lower
than their ionization threshold, which cannot ionize;
2) carriers with energy above their threshold, which can
ionize. For simplicity, as our previous report [12], it is
assumed that the excess energy after ionization is zero,
which means that, after ionization, three carriers (including
the initial one carrier and the second electron and hole)
with zero initial energy will be accelerated by electric field
to reach the threshold energy and then ionize again. The
carriers in the multiplication region are identified both by
their space position and energy state.
The total current density J in the APD is calculated by

J ¼ q
ðSvÞn þ ðSvÞp

L
, (1)

where q is the electronic charge, L is the thickness of the
depletion region in APD. For the reach through type APD,
L ¼ xm þ xc þ xg1 þ xa, where xm, xc, xg1 and xa are the
thickness for multiplication layer, charge layer, grading
layer and absorption layer, as shown in Fig. 1. In Fig. 1, the
electric field distribution is also demonstrated, which was
calculated from static Poisson’s equation, as shown in our
previous work [13].ðSvÞn indicates the product of the
integration of electron density over the thickness L and the
velocity of electrons. Similarly, ðSvÞp represents the
corresponding product of holes. The detailed expression
for SnðSpÞ can be found in the following part, i.e.,
SnðSpÞ ¼ SNmðSpmÞ þ SNcgðSPcgÞ þ SNabðSPabÞ, and the
details can be found in the following part.
Assuming that the absorption layer is completely

depleted, electrons and holes move with saturation
velocities, and there is no recombination, the current
continuity equations for electrons and holes are given by

∂nðx,tÞ=∂t þ vn1f∂nðx,tÞ=∂xg ¼ g, (2)

∂pðx,tÞ=∂t – vp1f∂pðx,tÞ=∂xg ¼ g, (3)

where vn1(vp1) is the saturation velocity of electrons (holes),
n (p) is the volume density of electrons(holes), and g is the
generation rate of electron-hole pairs. Under the lateral
illumination condition, the generation rate g can be given
by the spatial distribution, g ¼ g0δðtÞ½1 – expð – rxaÞ� [14],
where g0 is the number of photons incident per unit
distance, r is the absorption coefficient of the absorption
region, xa is the length of the absorption layer. Taking the
Laplace transform of Eqs. (2) and (3), we obtain that

∂Nðx,sÞ
∂x

þ s

vn1
N x,sð Þ ¼ g0

vn1
, (4)

∂Pðx,sÞ
∂x

–
s

vp1
P x,sð Þ ¼ –

g0
vp1

: (5)

According to the boundary conditions Nðx0,sÞ ¼
0, Pðx0 þ xa,sÞ ¼ 0 and x0 ¼ xm þ xc þ xg1. The expres-
sions of carrier density are given by

N x,sð Þ ¼ g0
s
½1 – expð – sðx – x0Þ=vn1Þ�, (6)

P x,sð Þ ¼ g0
s
½1 – expð – sðx0 þ xa – xÞ=vp1Þ�: (7)

To calculate holes and the electron’s contribution to the
current density, Nðx,sÞ (or Pðx,sÞ), is integrated over the
length of the absorption layer. Therefore, we obtain that

SN ab
ðxa,sÞ ¼ !

x0þxa
x0

Nðx,sÞdx

¼ g0
s
fxa þ vn1fexpð – sxa=vn1Þ – 1g=sg, (8)

SPab
ðxa,sÞ ¼ !

x0þxa
x0

Pðx,sÞdx

¼ g0
s
fxa – vp1f1 – expð – sxa=vp1Þg=sg: (9)

In the charge and grading layers, there is only carrier
drift, no contribution from absorption of photons and
without any impact ionization of carriers due to low
electric field. Taking the Laplace transform of the current
continuity equations, we obtain that

∂Nðx,sÞ
∂x

þ s

vn1
N x,sð Þ ¼ 0, (10)

∂Pðx,sÞ
∂x

–
s

vp1
P x,sð Þ ¼ 0: (11)

If electrons move a distance l from the location x, the
carrier density in frequency domain shows a delay.
Therefore, we obtain that

Fig. 1 Schematic structure of a InP/InGaAs SAGCM APD as
well as its corresponding electric field distribution
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N xþ l,sð Þ ¼ N x,sð Þexp –
s

vn1
l

�
,

�
(12)

P x – l,sð Þ ¼ P x,sð Þexp –
s

vp1
l

�
:

�
(13)

The sum of the carrier density in the charge and grading
layers are given by

SPcg
ðxcg,sÞ ¼ Pðx0,sÞ

vp1
s

1 – exp –
s

vp1
ðxc þ xg1Þ

� �� �
,

(14)

SN cg
ðxcg,sÞ ¼ Nðxm,sÞ

vn1
s

1 – exp –
s

vn1
ðxc þ xg1 þ xaÞ

� �� �
,

(15)

where Nðxm,sÞ is the electron density at position xm, and
the detailed expression for Nðxm,sÞ can be found in the
following part. And Pðx0,sÞ is the hole density at position
x0, which is given by the following equation

P x0,sð Þ ¼ g0
s
½1 – expð – sxa=vp1Þ�: (16)

Similarly, for holes, Pðxm,sÞ is the density of holes
arriving at the boundary of the multiplication layer, and is
given by

P xm,sð Þ ¼ P x0,sð Þexp –
s

vp1
xc þ xg1
� �� �

: (17)

The electric field in the multiplication layer is high
enough to make carriers ionize, where the electrons and
holes must satisfy the current continuity equations

∂nðx,tÞ=∂t þ vnf∂nðx,tÞ=∂xg
¼ αneðx,tÞvn þ βpeðx,tÞvp, (18)

∂pðx,tÞ=∂t – vpf∂pðx,tÞ=∂xg
¼ αneðx,tÞvn þ βpeðx,tÞvp, (19)

where vn (or vp) is the saturation velocity of electrons (or
holes) in the multiplication layer, α (or β) is the ionization
coefficient of electrons (or holes), and neðx,tÞ (or peðx,tÞ)
are the electrons (or holes) (per unit volume) capable of
initiating impact ionization. Taking the Laplace transform
of Eqs. (18) and (19), we obtain that

∂Nðx,sÞ
∂x

þ s

vn
N x,sð Þ

¼ 1

vn
½αNeðx,tÞvn þ βPeðx,tÞvp�, (20)

∂Pðx,sÞ
∂x

–
s

vp
P x,sð Þ

¼ –
1

vp
½αNeðx,sÞvn þ βPeðx,sÞvp�: (21)

The avalanche region is divided into a number of spatial
segments with equal energy spacing, and the carriers are
divided into two types: 1) carriers with energy below their
ionization threshold, 2) carriers with energy above their
threshold. And the relation between the whole carriers and
the carriers which can ionize in one spatial segment are
shown that

Pðx,sÞ ¼ Pðxþ ΔxÞexpð – sΔx=vpÞ
þ Peðxþ ΔxÞexpð – sΔx=vpÞ
� f1 – expð – βΔxÞg

þ αvnNe xð Þ1 – expð – αΔx – sΔx=vp – sΔx=vnÞðαþ s=vp þ s=vnÞvp
,

(22)

N x,sð Þ ¼ N x –Δxð Þexp – sΔx=vnð Þ
þNe x –Δxð Þexp – sΔx=vnð Þf1 – expð – αΔxÞg

þ βvpPe xð Þ1 – expð – βΔx – sΔx=vp – sΔx=vnÞðβ þ s=vp þ s=vnÞvn
:

(23)

As mentioned above, we assume that the energy of
carriers after ionization is zero. Therefore, the discrete
expressions of Eq. (22) are given by

P i,1ð Þ ¼ 2
X

j#³jionh

Pðiþ 1,j#Þexp – sΔx=vp
� �

�f1 – expð – βðiþ 1ÞΔxÞg

þ α ið Þvn
X

j#³jionh

Nði,j#Þ

� 1 – expð – αðiÞΔx – sΔx=vp – sΔx=vnÞ
ðαðiÞ þ s=vp þ s=vnÞvp

, (24)

Pði, jÞ ¼ Pðiþ 1, j – 1Þexpð – sΔx=vpÞ: (25)

Equation (25) shows that the holes cannot ionize and
only be accelerated by the electric field. If j – 1 reaches the
threshold energy, then the first term of Eq. (25) will be
multiplied by expð – βðiþ 1ÞΔxÞ. Similarly, the discrete
expressions of Eq. (23) are given by
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N i,1ð Þ ¼ 2
X

j#³jione

N i – 1,j#ð Þexp – sΔx=vnð Þ

� f1 – expð – αði – 1ÞΔxÞg

þ β ið Þvp
X

j#³jionh

P i,j#ð Þ

� 1 – expð – βðiÞΔx – sΔx=vp – sΔx=vnÞ
ðβðiÞ þ s=vp þ s=vnÞvn

, (26)

Nði,jÞ ¼ Nði – 1,j – 1Þexpð – sΔx=vnÞ: (27)

And if j – 1 reaches the threshold energy, then the first
term of Eq. (27) will be multiplied by expð – αði – 1ÞΔxÞ.
Where i and j are space position and the energy state of the
carriers, jionh is the value of j corresponding to the threshold
energy level of holes, and jione is the value of j
corresponding to the threshold energy level of electrons.
The sum of the carrier density in the multiplication layer
are given by

SPm
ðxm,sÞ ¼

X
i

X
j

Pði,jÞΔx, (28)

SNm
ðxm,sÞ ¼

X
i

X
j

Nði,jÞΔx: (29)

According to the boundary conditions, the loop itera-
tions of Eqs. (24), (25), (26) and (27) are carried out until
convergence. The procedure for computing Pði,jÞ and
Nði,jÞ is the same as that in Ref. [15]. There is a difference
in the boundary conditions, which are N(1,j) = 0, P(Kmax,1)
= P(xm,s), and P(Kmax,j) = 0 for other j.
The dc gain is calculated from the ratio of the dc current

(I) with ionization to that without ionization. The
expression is given by

Gdc ¼ Ið0Þionization=Ið0Þwithout�ionization, (30)

where “0” presents that the frequency is zero.
To get a more reasonable relation for the frequency

response of the detector, it is necessary to consider the
parasitic effects, and then we have

B ¼ 20log10
Iðf Þionization
Ið0Þionization

H

� �
, (31)

where f represents 3-dB bandwidth of the whole device
when B is equal to -3, and H is the transfer function of the
parasitic network, and then we have

H ¼ 1

1þj2πfRC
: (32)

In Eq. (32), R is the sum of the series resistance and the
load resistance. Also C, the junction capacitance of APD,
is given by

1

C
¼

X
i

1

Ci
, Ci ¼

ε0εi
xi

A, (33)

while Ci is the capacitance of a specified layer i, whose
thickness is xi and has a relative permittivity of εi in
depletion layer, A is the area of the APD.
Taking account of temperature dependence for dead

space theory, we adopt a temperature dependent ionization
coefficient from the work of Okuto and Crowell [16] and
the related work [17],

α,β ¼ qF

Ei

� �
exp 0:217

Ei

Er

� �1:14�

– 0:217
Ei

Er

� �1:14� 	2
þ Ei

qFl

� �2
( )1=2

1
A, (34)

where

Er ¼ Er0tanhðEr0=2KTÞ, l ¼ l0tanhðEr0=2KTÞ: (35)

In Eqs. (34) and (35), F denotes electric field, K denotes
Boltzmann constant, T denotes temperature in Kelvins, l
denotes the mean free path, Er denotes the average energy
loss from scattering of each phonon, and Ei denotes the
ionization threshold energy of carriers. Er0 and l0 denote
the corresponding parameters under the temperature of
0 K. The relationship between the ionization threshold
energy and the temperature is shown as follows.

Ei Tð Þ ¼ Eið300 KÞ
Egð300 KÞEg Tð Þ, (36)

where the change of the band gap with the temperature can
be expressed as following

Eg Tð Þ ¼ 1:421 –
3:63� 10 – 4T2

T þ 162
: (37)

3 Results and discussion

Figure 2(a) shows the simulation on basis of the proposed
temperature dependent dead space theory, and the solid
line denotes the linear fit. In contrast, in Fig. 2(b), it is
demonstrated our previous reported experiments [18] and
corresponding linear fit of the breakdown voltage changing
with temperature for the InP/InGaAs SAGCM-APD. It is
revealed from Fig. 2 that the theoretical temperature
coefficient is 87.39 mV/K, while the temperature coeffi-
cient deduced from the experimental measurement is 90
mV/K [18].
An empirical formula for temperature coefficient has

been reported [11], which is shown as following
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ΔV d

ΔT
¼ ½ð42:5� XmÞ þ 0:5� � w

Xm
, (38)

where Xm denotes the width of the multiplication layer, and
w denote the width for the whole depletion layer.
According to the empirical formula, the calculated

temperature coefficient is 114.39 mV/K, which is much
larger than our experiment, 90 mV/K as discussed above.
A comparison of temperature coefficient from temperature
dependent dead space theory, the empirical formula and
experimental data reveals that the proposed temperature
dependent dead space theory is believable, at least to our
experimental results.
Figure 3(a) shows the 3 dB bandwidth for the InP/

InGaAs SAGCM-APD vs multiplication. And the varia-
tion of the bandwidth with temperature at gain of 10 is also
illustrated in Fig. 3(b). In Fig. 3(a), as expected, the
bandwidth decreases as gain increases. The gain of the

APD, as shown in Fig. 3(a), due to the thin multiplication
layer (0.4 mm or so), is too low to be used as a SPAD. It is
an inherent trade-off between gain and bandwidth for
APDs, which is a bottleneck preventing APDs from being
applied in traditional high speed communication and
quantum communication simultaneously. In Figs. 3(a)
and 3(b), the blue open circles denote the experimental
data, which are consistent with the theory prediction. As
revealed in Fig. 3(b), the bandwidth at a gain of 10
decreases with the increase of temperature, and shows a
linear characteristic at a higher temperature region, and a
small deviation in the low temperature region. This
indicates that the decrease of the temperature in the high
temperature region can effectively increase the bandwidth,
but when the temperature drops to a certain value, the
bandwidth tend to be saturated. The fitting coefficient of
the relationship between bandwidth and temperature is
11.02 MHz/K. This may result from ionization coefficient,

Fig. 2 (a) Simulation of breakdown voltage on basis of the proposed temperature dependent dead space model, and the solid line denotes
the linear fit; (b) experimental data and the linear fit of breakdown voltage vs temperature

Fig. 3 (a) Simulation of 3 dB bandwidth vs multiplication on basis of the proposed temperature dependent dead space theory;
(b) simulation of 3 dB bandwidth vs temperature on basis of the proposed temperature dependent dead space model, and the blue open
circles denote the experimental data
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band gap and drift velocity changing with temperature.
The consistence of simulation with measurements further
prove that our proposed model is reliable.

4 Conclusions

Based on the temperature dependent dead space model, the
breakdown voltage and bandwidth of InP/InGaAs APD
have been investigated theoretically and experimentally.
The low temperature coefficient of 90 mV/K, as well as its
consistence of the proposed model with experiments
results, prove that the fabricated APD and our proposed
temperature dependent dead space model are reliable. It is
a trade-off between gain and bandwidth for APDs, which is
a future work to pave a way for APDs applied in traditional
high speed optical communication and SPAD for quantum
communication simultaneously.
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